W periodyku Measurements (IF: 3.364, 200 pkt MEiN) ukazała się kolejna publikacja pracownika KMiSD, prof. dr. hab. inż. Mykhaylo Dorozhovets'a. Artykuł został przyjęty w grudniu 2020, jednak finalną wersję opublikowano on-line dopiero w czerwcu 2021. Dorozhovets M.: Exact distributions and interval estimation of the parameters of double exponential (Laplace) population for a small number of observations. Measurement Vol. 182, 2021, 108857. (https://www.sciencedirect.com/science/article/pii/S0263224120313488)
Abstract
In the article exact joint and marginal distributions for the location and scale parameters of the double exponential (Laplace) population for a number of observations from n = 2 up to n = 10 are given. These distributions are obtained by transformation of the joint distribution of estimators. It sown that the basic problem of the deriving the joint distribution of estimators relate with the presence of module functions in the model of the population distribution. The general procedures to derive the joint distribution of estimators for the odd and even number of observations are presented. The expected values, variances, standard deviations (uncertainties) and two-side confidence intervals of population parameters for a confidence levels p = 0.90, 0.95 and 0.99 are determined and presented in corresponding tables. The obtained results were verified by Monte-Carlo simulations.